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a b s t r a c t

A new general formulation for the spatial modeling of combat is presented, where the
main drivers are movement attitudes and struggle evolution. This model in its simplest
form is represented by a linear set of two coupled partial differential equations for two
independent functions of the space and time variables. Even though the problem has a
linear shape, non-negative values for the two functions render this problem as nonlinear. In
contrast with other attempts, this model ensures stability and theoretical consistency with
the original Lanchester Equations, allowing for a better understanding and interpretation
of the spatial modeling. As a numerical illustration a simple combat situation is developed.
Themodel is calibrated to simulate different troopmovement tactics that allow an invader
force to provokemaximumdamage at aminimum cost. The analysis provided here reviews
the trade-off between spatial grid and time stepping for attrition cases and then extends it
to a newmethod for guaranteeing good numerical behavior when the solution is expected
to grow along the time variable. There is a wide variety of spatial problems that could
benefit from this analysis.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Lanchester [1] introduced a set of linear and only time-dependent differential equations that describes an attrition
conflict between two opposite forces concentrated on a spot [2]. Since then, Lanchester Equations (LEs) have been widely
used to model and theorize about combat attrition for many years. See for example [3,4], for earlier analysis and [5–7]
for some recent contributions. A complete review can be found at [8]. This success can be explained mainly because of
the simplicity of LEs, and the fact that they are very intuitive and hence easy to apply. Additionally, at present there are
several research lines using LEs to analyze very different problems: such as behavioral ecology [9], epidemiology [10],
infectology [11,12], marketing [13–17] and economics [18–21], which have maintained the interest in the Lanchester
approach.

However, the traditional Lanchester approach lacks a spatial description. Some models have been developed, for
example [22] makes an analogy with Reaction–Diffusion equation but constrained to one spatial dimension while leaving
the identification of the parameters as an open-ended problem. The numerical solution to the extended mathematical
formulation is then analyzed by [23], focusing mainly on the abstract problem. Later on, in another work, [24] analyze a
specific nonlinear situation closely related to the Lanchester spatial formulation, but applied to predator–prey dynamics.
Finally, another example deals with competition–diffusion, through the Lotka–Volterra formulation making emphasis on
the spatial evolution of the competing species (see [25]). Adding to that research, a new formulation is introduced here,
where the balance of forces yields a set of two coupled 2D+ t PDEs. Particularly, this new formulation ensures stability and
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theoretical consistencywith the original Lanchester Equations, allowing for a better understanding and interpretation of the
spatial modeling than the other attempts. This new space–time formulation has a potentially wider range of applications
than the original LEs, such as: modeling different types of combat, politics and economic competition, bacteria control,
epidemiology, predator–prey behavior, among other phenomena.

A solution is proposed using the FD method, and for situations where no regeneration of the forces is allowed a stability
criterion that links the coarseness of the spatial grid and the refinement of the time-stepping is sought and found. When
regeneration happens, another procedure is applied ensuring stability through a transformation that preserves the shape
of the PDEs. This formulation can be regarded as another branch of the Reaction–Diffusion equations. As the purpose of
this document is to give insight on a method, some simple examples are developed showing some numerical results.
The examples make use of background velocity and attrition, exploring the effects of density and asymmetries. The non-
negativeness of the solutions forbids analytical solutions.

The rest of this paper is organized as follows. In the next section, a general formulation of the newmodel and its equations
are presented. The solution of the resultant linear PDE system is numerically developed using the Crank–NicolsonMethod. In
Section 4 the stability of the solution of themain formulation is analyzed anddiscussed using vonNeumann characterization,
that is to say, discretization is probed by assuming an amplification factor for local modes of the solutions. This method is
used in conjunction with a modulation function that decouples the implicit growth effect of the concentration of forces
in order to avoid misleading conclusions arising from the traditional plain application of the von Neumann analysis. An
example of the model’s capabilities is developed in Section 5. In Section 6 the findings are summarized, and directions for
future research are discussed.

2. The model

The spatial Lanchester problem uses a spatial coordinates system for the forces that will engage in combat, typically two:
the red and blue armies. Without loss of generality, the surface density of the blue forces will be represented by B (x, y, t)
and that of the red forces will be represented by R (x, y, t). An element of each force will have an instantaneous velocity
given respectively by v⃗B (x, y, t) and v⃗R (x, y, t), so the densities of current for the Blue and Red forces are J⃗B (x, y, t) =
B (x, y, t) v⃗B (x, y, t) and J⃗R (x, y, t) = R (x, y, t) v⃗R (x, y, t). In addition, the net internal generation of forces is defined by GB
and GR respectively. It should be highlighted that both surface densities B and R must be non-negatively valued functions,
unless they have some polar behavior.

Regarding the definitions presented above, the imposition of the balance of forces (continuity) to the spatial combat leads
to:

Gθ − ∇⃗ · J⃗θ = Gθ −
∂ Jθx
∂x
−
∂ Jθy
∂y
=
∂θ

∂t
, (1)

where θ can be either B or R.
It remains clear that J⃗R = R · v⃗R and J⃗B = B · v⃗B, where v⃗R,B is the instantaneous velocity of each part of the respective

moving force, and B and R, are the densities of the Blue and Red forces respectively. Without losing generality the same
equations could be extended to a volumetric combat, adding easily the z coordinate. For the purpose of this document that
discussion is left out.

The internal densities can be expressed considering the profile of the engaging forces through the Lanchester expressions:

GB = gB (x, y, t)−
∞−
i=0


∞−
j=0

αBijRiBj


, (2)

GR = gR (x, y, t)−
∞−
i=0


∞−
j=0

αRijBiRj


(3)

where the α coefficients might be space–time dependent.
Combining Lanchester Equations (2) and (1) and the constitutive relations for J⃗B a new expression arises:

GB − ∇⃗ · (Bv⃗B) = −∇⃗ · J⃗B + gB (x, y, t)−
∞−
i=0


∞−
j=0

αBijRiBj


=
∂B
∂t

(4)

and applying the same procedure, a twin expression results.
Thus, the general approach to model spatially Lanchester Equations can be written generically as:

− ∇⃗ · (θ v⃗θ ) =
∂θ

∂t
− Gθ . (5)

Finally, the total number of remaining forces in the battlefield for any time is described by:

θT =

∫∫
S
θ (x, y, t) dS. (6)
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Nevertheless, in order to complete the formulation, the motion behavior of the forces must be described. In some
cases explicitly through the velocities, but in other cases implicitly through the densities of current, can close the problem
definition. The analysis found in the next paragraphs illustrate this matter better, specifically some particular assumptions
are discussed.

2.1. Responsive movement and perception

Usually in a war situation, it is expected that the motion of one of the forces, even if combats were discarded, might
influence the motion of the other one. This type of movement is called responsive movement. Assuming that the density
of current of forces will be related to the balance of both forces, two simple possibilities should be borne in mind as main
drivers of the forces (not the only ones): linear behavior of the velocities and linear behavior of the densities of current.

The way a force reacts during the struggle may vary widely depending on the type of forces involved. Moreover,
perception of the strength can be very different if it regards own forces or opposing ones. Lack of intelligence is an extreme
way in the behavior of a force, but high use of the knowledge of the own and opposing motion of each side could be close
to the other extreme, especially if the reaction is nonlinear.

Four parameters can be introduced here which account for a combined effect of the perception and ability of each force.
The first subscript indicates the observer and the second subscript indicates the subject of the observation, e.g.: hBR is the
result of such a combined effect of strength of the Red force perceived by the Blue force. In order to separate both effects, it
is useful to define the actual strength of each force: kB and kR assumed to be constants for this case, even though they could
be time and terrain dependent, so four pure parameters (uij) define just perception (in general they can be time and terrain
dependent), and they are defined as follows:[

hBB hBR
hRB hRR

]
=

[
kBuBB kRuBR
kBuRB kRuRR

]
. (7)

As a rule of thumb, hij = kjuij.
The group of forces located at some position will move towards or away from the other forces according to the perceived

strength of the opponent.

J⃗B = −f⃗B − pB

hBB∇⃗B− hBR∇⃗R


+ Bv⃗0B (8)

J⃗R = −f⃗R − pR

hRR∇⃗R− hRB∇⃗B


+ Rv⃗0R (9)

where pB and pR are proportionality constants and f⃗B and f⃗R are friction terms and assumed to be constant vectors because
terrain is assumed to be homogeneous. It should be pointed out that v⃗0B and v⃗0R are the background velocities of each
force, that represent the strategic decision of the respective commanders. In this work, and for the sake of simplicity, these
velocities are assumed to be constant vectors.

By replacing (9) into (1) and proceeding in the sameway for the other forces, the densities of current no longer appear in
the equations, leaving the problemwith a resemblance to the classic Poisson equation in terms of the B and R force densities:

pB

hBB∇

2B− hBR∇
2R

− v⃗0B · ∇⃗B =

∂B
∂t
− GB (10)

pR

hRR∇

2R− hRB∇
2B

− v⃗0R · ∇⃗R =

∂R
∂t
− GR. (11)

Due to the right-hand side of these two equations generally this still is a nonlinear problem.

2.2. An application on the time side

The great importance of the introduction of this kind of velocity is that it exists even if no elements of the force are present
at some spot. Also, because the forces would start aligning in preparation for combat or escape, quite long before.

Specifically, a responsivemovement of the soldierswill bemodeled. Thus, the densities of currents of the forceswillmove
towards or away the enemies depending on the balance of gradients. In other words, each force will evaluate dynamically
its strength against the opposite forces, and it will move accordingly.

Note that if friction is neglected and hBB/hBR = hRB/hRR, then both forceswill have the same instantaneous direction at the
same point of the surface, but with different signs. This condition is equivalent to having the determinant of the associated
linear system equal to zero.

The situation to be analyzed assumes no spontaneous generation and only linear dependencies given by the terms:

αB10 = ER(=kR) αB01 = MB

αR10 = EB(=kB) αR01 = MR.
(12)
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The resulting equation can be generically written as:[
ω1 ω2
ω3 ω4

] [
B
R

]
= 0 (13)

where

ω1 = pBhBB∇
2
−MB −


v⃗0B · ∇⃗


−
∂

∂t
(14)

ω2 = −pBhBR∇
2
− ER (15)

ω3 = −pRhRB∇
2
− EB (16)

ω4 = pRhRR∇
2
−MR −


v⃗0R · ∇⃗


−
∂

∂t
(17)

clearly ωi are spatio-temporal differential operators.

3. Numerical solution for a 2D uniform grid

As B and R must be non-negatively valued for each point of the space time domain, the solution to this problem cannot
be treated as in the Dirichlet or Neumann problem, because the non-negativity can be regarded as a time-dependent border
condition. Bearing in mind this statement, a numerical approach suits this problem better, where the formulation given
by Eq. (13) drives to a time stepping formulation for the spatial profile of the B and R scalar fields. The procedure should
provide a way to adjust the time step so as to limit the maximum deviation of negative values and then to reset acceptable
deviations to zero. The time stepping can be faced with a stable Crank–Nicolson (C–N) method, leaving the spatial problem
to other methods. Here, Finite Differences (FD) are used as a first approach.

Eq. (13) can be rewritten as:

[L] [U] =
∂

∂t
[U] (18)

where L is a linear matrix operator that depends on the spatial variables, and [U] =

B
R


. Now, by rearranging terms:

[L] =

pBhBB∇
2
−MB −


v⃗0B · ∇⃗


−pBhBR∇

2
− ER

−pRhRB∇
2
− EB pRhRR∇

2
−MR −


v⃗0R · ∇⃗

 (19)

[Q ] =
[
Q1 Q2
Q3 Q4

]
=

[
pBhBB −pBhBR
−pRhRB pRhRR

]
(20)

[W ] =
[
W1 E2
E3 W4

]
=

MB +


v⃗0B · ∇⃗


ER

EB MR +


v⃗0R · ∇⃗

 (21)

[L] = [Q ]∇2
− [W ] (22)

F(U) .=

[Q ]∇2

− [W ]

[U] = [I]

∂

∂t
[U] (23)

where E1 = MB and E4 = MR.
Crank–Nicolson decomposition leads to:

1
2


F

Un+1

+

F

Un

=
1
1t

[I]

Un+1

−

Un , (24)

or,

− [Q ]∇2 Un+1
+


2
1t

[I]+ [W ]
 

Un+1
= [Q ]∇2 Un

+


2
1t

[I]− [W ]
 

Un (25)

and application of FD for square elements (1x = 1y) for the Laplacian operator yields:

∇
2F ∼

1
2 (1x)2


Fi−1,j + Fi,j−1 + Fi,j+1 + Fi+1,j − 4Fi,j


(26)
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that allows one to write:

−
1

2 (1x)2
[Q ]


Un+1
i−1,j


+

Un+1
i,j−1


+

Un+1
i,j+1


+

Un+1
i+1,j


− 4


Un+1
i,j


+


2
1t

[I]+ [W ]
 

Un+1
i,j


=

1
2 (1x)2

[Q ]

Un
i−1,j


+

Un
i,j−1


+

Un
i,j+1


+

Un
i+1,j


− 4


Un
i,j


+


2
1t

[I]− [W ]
 

Un
i,j


. (27)

Now, by assuming that the grid to be considered has L byM square cells of side1x, that [U] represents a vector that holds
both B and R, calling [ILM ] the identity matrix of LM dimension, and that [I2LM ] is the identity matrix of 2LM dimension, then
the equation turns into: 2

1t
[I2LM ]+

E1 [ILM ]+ [Z1]−
Q1

2 (1x)2
[S] E2 [ILM ]−

Q2

2 (1x)2
[S]

E3 [ILM ]−
Q3

2 (1x)2
[S] E4 [ILM ]+ [Z4]−

Q4

2 (1x)2
[S]


Un+1

=

 2
1t

[I2LM ]−

E1 [ILM ]+ [Z1]−
Q1

2 (1x)2
[S] E2 [ILM ]−

Q2

2 (1x)2
[S]

E3 [ILM ]−
Q3

2 (1x)2
[S] E4 [ILM ]+ [Z4]−

Q4

2 (1x)2
[S]


Un (28)

where [S] is the matrix generated from the assembly given by the Laplacian operator,

[Z1] = v0Bx [X]+ v0By [Y ] (29)

and

[Z4] = v0Rx [X]+ v0Ry [Y ] (30)

where [X] and [Y ] are generated by using respectively the differential operators given by:

∂H
∂x
∼

1
2 (1x)


Hi+1,j − Hi−1,j


(31)

∂H
∂y
∼

1
2 (1x)


Hi,j+1 − Hi,j−1


. (32)

Clearly, Eq. (28) gives an iterative procedure to solve [U] by stepping. Eq. (28) presents separately the time and spatial
evolution of the forces. Indeed, if [Qi = 0], then the system becomes the traditional Lanchester model, without a spatial
component.

As expected, all the terms in the matrices are constant and hopefully positive. If a negative but tolerable value, i.e. small
enough, appears in one of the components of the vector


B
R


then that negative term must be replaced by a zero because

only positive forces are significant here. If for some element of that vector the negative value is too large, then it is advisable
to repeat the procedure for the last step with a smaller value of1t .

4. Stability

4.1. No regeneration

Time stepping of the equations for the linear case leads to:[
2
1t

I + E

− Q∇2

]
Un+1

=

[
2
1t

I − E

− Q∇2

]
Un. (33)

On the other side, the Laplacian operator under Crank–Nicolson becomes:

∇
2U ∼

1
2 (1x)2


Ui−1,j + Ui,j−1 + Ui,j+1 + Ui+1,j − 4Ui,j


. (34)

So the equations under analysis become:
2
1t
+ E1 − Q1∇

2

Bn+1
+

E2 − Q2∇

2 Rn+1
=


2
1t
− E1 + Q1∇

2

Bn
+

−E2 + Q2∇

2 Rn (35)

and 
2
1t
+ E4 − Q4∇

2

Rn+1
+

E3 − Q3∇

2 Bn+1
=


2
1t
− E4 + Q4∇

2

Rn
+

−E3 + Q3∇

2 Bn. (36)
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Now assuming a local mode solution, which employs von Neumann stability analysis with the Lax method, as in [26],
and extended to a two-functions system, the problem remains stable if the amplitude of the local modes is kept bounded
because the assumption of local modes Un

j,l =


ξ
η


ρnei(jkx+lky)1x imply that the relative amplitude ρ, should comply with

ρ < 1, because the time dependence of the relative amplitude of the local modes is represented by the successive integer
powers of ρ. Bearing that in mind, it is possible to write:

 2
1t
+ E1 E2

E3
2
1t
+ E4

− [Q1 Q2
Q3 Q4

]
∇

2

[ρn+1ξ

ρn+1η

]
ei(jkx+lky)1x

=


 2
1t
− E1 −E2

−E3
2
1t
− E4

+ [Q1 Q2
Q3 Q4

]
∇

2

[ρnξ
ρnη

]
ei(jkx+lky)1x. (37)

But the Laplacian, applied to the exponential, with1x = 1y gives the following result:

∇
2
∼

1
2 (1x)2


eikx1x

+ e−ikx1x
+ eiky1x

+ e−iky1x
− 4


ei(jkx+lky)1x (38)

∇
2
∼

1

(1x)2

cos kx1x+ cos ky1x− 2


ei(jkx+lky)1x

=
α

(1x)2
ei(jkx+lky)1x (39)

also:

v⃗0 · ∇⃗ ∼
i
1x


v0x sin kx1x+ v0y sin ky1x


(40)

 2
1t
+W1 E2

E3
2
1t
+W4

− α

(1x)2

[
Q1 Q2
Q3 Q4

][ρn+1ξ

ρn+1η

]

=


 2
1t
−W1 −E2

−E3
2
1t
−W4

+ α

(1x)2

[
Q1 Q2
Q3 Q4

][ρnξ
ρnη

]
(41)

but the vector on the left-hand side of the equation can be written as a simple operation over the same vector found on the
other side of the equation:


 2
1t
+W1 E2

E3
2
1t
+W4

− α

(1x)2

[
Q1 Q2
Q3 Q4

][ρ 0
0 ρ

]
[
ρnξ
ρnη

]

−


 2
1t
−W1 −E2

−E3
2
1t
−W4

+ α

(1x)2

[
Q1 Q2
Q3 Q4

]
[
ρnξ
ρnη

]
= 0. (42)

And as the valid results need a nontrivial solution, the determinant of the involved matrix must be nil. Rewriting the
matrix, the expression is now:

det




2
1t


(ρ − 1)+


E1 −

αQ1

(1x)2


(ρ + 1)


E2 −

αQ2

(1x)2


(ρ + 1)

E3 −
αQ3

(1x)2


(ρ + 1)


2
1t


(ρ − 1)+


E4 −

αQ4

(1x)2


(ρ + 1)

 = 0. (43)

Which leads to:
2
1t


(ρ − 1)+


W1 −

αQ1

(1x)2


(ρ + 1)


2
1t


(ρ − 1)+


W4 −

αQ4

(1x)2


(ρ + 1)


=


E2 −

αQ2

(1x)2


(ρ + 1)


E3 −

αQ3

(1x)2


(ρ + 1)


. (44)
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This is a second order equation that must guarantee that both solutions of |ρ| are smaller than one. It should be noticed
from Eq. (39) that always:

− 4 ≤ α ≤ 0, a (45)

result that can be helpful when the background velocities are zeroes.
Returning to the second degree equation for ρ. If the following parameters are defined, then it can be compactly written:

al = Wl −
αQl

(1x)2
(46)

for l = 1, 2, 3, 4 where:

W1 = E1 + iβB (47)
W2 = E2 (48)
W3 = E3 (49)
W4 = E4 + iβR (50)

and,

βB =


1
1x

 
v0Bx sin kx1x+ v0By sin ky1x


(51)

βR =


1
1x

 
v0Rx sin kx1x+ v0Ry sin ky1x


(52)

b =
2
1t

(53)

c =
α

(1x)2
(54)

A =


(a1a4 − a2a3 − βBβR)− b2 + i (a1βR + a4βB)

b2 + (a1a4 − a2a3 − βBβR)+ b (a1 + a4)+ i (a1βR + a4βB + b (βB + βR))


(55)

D =

b2 + (a1a4 − a2a3 − βBβR)− b (a1 + a4)+ i (a1βR + a4βB − b (βB + βR))

b2 + (a1a4 − a2a3 − βBβR)+ b (a1 + a4)+ i (a1βR + a4βB + b (βB + βR))


. (56)

Both A and D can be complex numbers, giving:

ρ2
+ 2Aρ + D = 0. (57)

Thus, two conditions should be met for stability:

‖ρ1‖ =

−A+A2 − D
 < 1 (58)

and:

‖ρ2‖ =

A+A2 − D
 < 1. (59)

If v⃗0B and v⃗0R are not zero, then it is useful to define two variables ϕ = kx1x and ψ = ky1x where both range from 0
to 2π , and then plot the expressions for 1 − ‖ρ1‖ and 1 − ‖ρ2‖. Both surfaces should be constrained between 0 and 1 for
assured stability.

It is usually possible to find suitable parameters for the simulation that can guarantee full satisfaction of both conditions,
and hence stability.

If the velocities v⃗0B and v⃗0R are both zero, the stability is more easily guaranteed using the α parameter as the variable
for plotting, now as a line sketch, the behavior of 1− ‖ρ1‖ and 1− ‖ρ2‖.

4.2. Self regeneration of one or more forces

Assuming that one of the forces has the biggest negative value for Mp, where p can be either B or R, and just for this
example, p = R and K = −MR, by taking Eq. (13) and replacing the concentrations for the following functions:

B = b exp(st) (60)

and

R = r exp(st) (61)
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Table 1
Initial conditions.

θ R B R B R B

Amplitude 6000 10,000 6000 10,000 6000 10,000
Aθ 4.2 4 4.2 4 4.2 4
cxθ 453.00 153.85 453.00 153.85 453.00 153.85
cyθ 142.37 180.37 142.37 180.37 142.37 180.37
x0θ 1909.80 2068.95 1697.60 2068.95 1485.40 2068.95
y0θ 1007.95 2122.00 1007.95 2122.00 1007.95 2122.00

the time derivative allows one to write:pBhBB∇
2
− (s+MB)−


v⃗0B · ∇⃗


−pBhBR∇

2
− ER

−pRhRB∇
2
− EB pRhRR∇

2
− (s− K)−


v⃗0R · ∇⃗

[b
r

]
−
∂

∂t

[
b
r

]
= 0 (62)

which means that if the value chosen for s is greater than K , the equation keeps the same shape as (13) but replacing the
old value ofMB by the new value of s+MB. It follows now, that the value of−K in the system for B and Rwhich renders the
equations unstable, is replaced for s− K in the system for b and r , leading to a stable solution.

This formulation sorts out the problem guaranteeing stability for

b
r


, using the same numerical formulation, so the real

solution is obtained by simply multiplying that vector by exp(st), since the solution has been obtained after having chosen
s > K . Also, this method can help in reducing the size of the grid in x − y or the stepping in t , even for non-regenerating
relations between the functions. It is very important to highlight that the spatial envelope of the solutions for B and R do not
change, so for a given time of evolution, the distribution of forces b and r is the same as for B and R, except for the exponential
factor.

5. Numerical illustration

5.1. Modeling troop movement tactics

‘‘Invincibility lies in the defense; the possibility of victory in the attack. One defends when his strength is inadequate; he attacks
when it is abundant.’’—Sun Tzu.

Let us assume two disciplined (i.e.: low level of dispersion among the army contingent) and well-informed (i.e.: both
have perfect foresight of their own and of the enemy forces) armies that fight for the control of a well-defined area. The red
army is in a stationary position, protecting the area of interest, while the blue army is moving towards it. The blue army is
less numerous than the red one, but it could choose the time and location of its attack. Logically, the best tactic to follow
for the blue army would be to take advantage of the attack location, choosing a zone of asymmetry, where they can locally
overpower the red army forces. Thus, the main objective of the blue army is to cause the greater damage to the enemy forces at
a minimum cost of its own casualties. Our general formulation, a spatial Lanchester model, will allow us to model this battle
in a proper way, ensuring consistency and stability in the results.

The model uses a square grid of 77 nodes on each side. The initial distribution functions share the same symmetry, but
different initial spatial amplitude and location. Abrupt changes in the initial state of the system are avoided by using the
following functions as initial conditions:

θ (x, y, t = 0) = Aθ · sech


x− x0θ

cxθ

2

+


y− y0θ

cyθ

2


(63)

where Aθ is the amplitude of the length of θ forces, xy are locations points, and c is the length of one side of each cell. The
parameters of the expressions given by (63) are presented in Table 1.

The main arbitrary and physical units used in the simulation are presented in Table 2:
The experiment considers different locations for the blue army attack, starting nearly from the center of the grid and

moving towards the left far side of the red forces. The reference system has their coordinates (0, 0) located at the bottom-
left corner of the grid. Coordinates are measured in meters. In particular, four runs are presented: (1) R36 where the blue
army begins its attack in coordinate x = 1909.8 m, or equivalently in line 36 according to our grid definition, (2) R32 that
starts the attack at coordinate x = 1697.6, in line 32, (3) R28 where the attack starts at coordinate x = 1485.4, line 28; and
finally, (4) RD28 that commences in the same coordinate x = 1485.4 as in the previous one, but with a different discipline of
attack, in this case with more diffusion, see the quotient lower bound in Table 1. The scenario RD28 is set with 0.75 instead
of 0.35 as all the other three previous simulations. In Fig. 1, the battle is simulated for each scenario in turn, showing the
evolution of red and blue forces.

The results are shown in the table below,where Rfi and Bfi are the ratios of the final and initial forces at the same time once
the battle has started, specifically at 1400 time steps, or in other words at 63 min according to the units already presented
in Table 2.
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Table 2
Equivalences and units.

Concept Arbitrary unit Physical unit

Time UT 180 (min)
Distance UL 7.2 · 104 (m)
Cell side 7.368 · 10−4 UL 53.05 (m)
Time step 0.25 · 10−3UT 45 · 10−3 (min)
Soldiers US 104 (soldier)
Concentration of forces (B; R) UC = US · UL−2 1.929 · 10−6 (soldier m−2)
Velocity (v⃗) or Speed (v) UV = UL · UT−1 400 (mmin−1)
Density of current (⃗J) UJ = US · UL−1 UT−1 7.716 ·10−5 (soldier m−1 min−1)
pB 10−7 UL2 518.4 (m2)

pRcase1 10−7 UL2 518.4 (m2)

pRcase2 5 · 10−7 UL2 2592 (m2)

MB 0.0 UT−1 0 (min−1)
ER 5.5 UT−1 0.03056 (min−1)
MR 0.0 UT−1 0 (min−1)
EB 5.5 UT−1 0.03056 (min−1)
v0B

3
40 UV 30 (mmin−1)

Run length 1400 Time steps 63 (min)

Fig. 1. Evolution of red and blue forces at different times and starting positions—contour plots. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Table 3
Simulations scenarios and results: Percentage of losses. Ri/Bi = 1.3670.

Case Label Simulation scenarios Rfi Bfi Rfi/Bfi Rf /Bf

1 R36 Attack at x = 1910 (m) 0.726009 0.729386 0.995370 1.3607
1 R32 Attack at x = 1698 (m) 0.759713 0.841087 0.903251 1.2348
1 R28 Attack at x = 1485 (m) 0.874933 0.970228 0.901780 1.2327
2 RD28 Reduced discipline 0.859049 0.973607 0.882336 1.2062

Fig. 2. Evolution of red and blue forces at different times and starting positions—3D plots. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Considering the objective of the blue forces, to cause the greater damage to the enemy forces at a minimum cost of its own
casualties, and Table 3, the best strategy would be that with the lower Rf /Bf coefficient, which is a measure of the balance
of forces.

Clearly the scenario where more red forces are destroyed is R36, with almost 30% of losses regarding its initial number,
however, about the same proportion of the blue army is also eliminated. This situation is undesirable if more attacks are
intended in order to conquer the land where the red army stays, unless reinforcements are available for the attackers when
splitting the army into two parts, see Fig. 2.

If the attack is shifted away from the symmetry line of the defending forces while keeping the same formation, the
situation improves in termsof force balances. The results suggests that the best place for the blue attack,where full advantage
is taken from the asymmetry, is the scenario R28, where almost 13% of the red army’s initial forces are destroyed, but only
3% of the blue forces are eliminated. Actually, the Rf /Bf coefficient gets better and hints at the convenience of another attack
following the same tactics on the other flank of the red army.

Another analysis is done assuming that the discipline of the blue army formation is relaxed, or in otherwords the constant
of diffusion is greater than before for the blue army, scenario RD28. The results point towards the convenience of this tactic,
certainly a more realistic one, showing that the troops discipline (cohesion), when this type of attack is performed, must
be carefully designed because what underlies here is a chasing behavior that can render good results only when the local
balance of forces keeps the asymmetry of the battle. If the formation discipline gets even more lax, then a disastrous defeat
could be faced by the blue army.

In the case analyzed here, and assuming no other interactions, after 63 min almost 15% of the red forces are eliminated
but less than 3% of the blue forces are down, thus improving the result with respect to a more stern formation discipline.
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Fig. 3. Stability coefficients 1− ‖ρ1‖ and 1− ‖ρ2‖ for the simulations R28, R32 and R36 (case 1) and RD28 (case 2). Exponential constant S = 0.6.

Clearly, these results seem to confirm the fact that a good tactic in this situation could be to take advantage of the
asymmetry repeatedly, slicing the enemy army, until a full attack at the center is feasible in order to achieve the annihilation
of the opposite army. A future research could be to optimize the path and number of attacks, in away the time and the human
losses are reduced. Another area of future research is to analyze different angles of attacks and speeds, which are allowed
by the present general formulation. However, in this case, given the great amount of computational resources needed to
perform the necessary interpolations, this aspect of the modeling has not been considered.

5.2. Stability analysis

Stability, which is explained in 4, is assured for the parameters given in all the previous example. The bi-valued coefficient
1−|ρ| is shown for 160,000 points, hence exploring the full range of angles (0←→ 2π)with a reasonable refinement. The
analysis results in a rather stable solution, as can be seen in Fig. 3, where the 1− |ρ| coefficient is always greater than zero
and far below one. The result is guaranteed only because an attenuation/amplification process using S = 6.0 has been used
for the B and R functions, otherwise the solutions had been unreliable due to divergence during time-stepping.

It is important to notice that for smaller grids some inconsistencies in the integration process were found. Specifically,
for example, when a square grid of 57× 57 nodes was used, the continuity of the attacking forces experienced up to 3% of
fluctuations, due to velocity-interpolation effects. When the grid is expanded to 77 × 77 nodes, the fluctuation is reduced
to 1%, a figure that reflects a better matching of the grid with the concentration of the blue forces while they move, mainly
due to the background velocity.

6. Concluding remarks

A new formulation for solving the spatial modeling of Lanchester Equations is presented. Particularly, this new model
is conceptualized on the basis of a consistent balance of forces and developed in order to account not only for the time
dynamics of the problem, but also for the location, movement and concentrations of the forces at ‘‘war’’. In contrast with
other attempts, the model solved here, ensures stability and theoretical consistency with the original Lanchester Equations,
allowing for a better understanding and interpretation of the spatial modeling. The model involves a system of PDEs similar
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to those of Reaction–Diffusion equations, and its solutions can be found using Finite Differences, Finite Elements or other
numerical methods.

In order to find stable solutions, the method provides stability indices that can hint to the programmer new space–time
discretizations, but also the procedure can introduce an exponential factor that can ensure stability for naturally growing
forces under this numerical method.

As the non-negativeness of the solutions forbids analytical solutions, insight is given through a simple example that is
developed showing some numerical results. Stability has been checked for one of the force’s behavior and a non divergent
solution is rather guaranteed for both regenerating and non-regenerating forces.

The results of the LEs are expanded by these new modeling possibilities in a number of directions, giving to the analysis
a whole new spectrum of variables and parameters to simulate in a more realistic fashion the current problems modeled
with LEs.

As a numerical illustration of the general spatial Lanchester model presented in this research, a simple combat situation
is simulated. Specifically, a troop looks for the best location (more efficient) to attack a stationary army which protects a
site. Themodel is aimed to simulate different troopmovement tactics that allow the invaders to provokemaximum damage
at a minimum cost. The main results confirm the fact that spatial modeling matters and that in this specific setting a good
tactic could be to attack the less dense zone in order to take advantage of the asymmetry achieved in that specific location.

As future research, optimal path could be found by varying angles of attack, either keeping or modifying the formation
and repeating the assault, giving important information in terms of the more effective tactics.

The general formulation introduced here could also have stochastic analysis, either by specifically modeling the
background velocity field or bymeans of a characterization of the term that accounts for the struggle. In addition, themodel
could be applied to 3D situations, requiring of course more computational resources but little analytical effort.

Despite the fact that this general model is used here for warfare applications, there is a variety of spatial problems where
this model could be used, e.g.: epidemiology and public health policy, spatial retail competition, crime location and public
control policy and others where there are two or more struggling forces.
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